
w
w

w
.i
n

l.
g

o
v

RELAP5-3D Participation in
CASL

Peter Cebull

October 24, 2012

Outline

• CASL background

• What is LIME?

• Integration of RELAP5-3D into VERA

• Current status of RELAP5-3D in the CASL program

• Summary

Can an advanced “Virtual Reactor” be developed
and applied to proactively address critical
performance goals for nuclear power?

CASL has selected key phenomena limiting reactor
performance selected for challenge problems

The CASL Virtual Reactor (VERA) builds on a foundation of
mature, validated, and widely used software

What is LIME?

• An acronym for Lightweight Integrating Multi-physics Environment for
coupling codes

• A tool for creating multi-physics simulation code(s) that is particularly
useful when computer codes are currently available to solve different
parts of a multi-physics problem

• One part of the larger VERA framework being developed in CASL

Important characteristics of LIME

• LIME is designed to:

– Enable separate physics codes (“new” and “old”) to be combined
into a robust and efficient fully-coupled multi-physics simulation
capability

– Allow composition of both controlled and open-source
components, enabling protection of export-controlled or proprietary
code while still allowing distribution of the core system and open
components

• LIME is not limited to:

– Codes written in one particular language

– A particular numerical discretization approach (e.g., finite element)

• LIME is not “plug and play”:

– Requires revisions/modifications to most stand-alone physics
codes

– Requires the creation of customized “model evaluators”

Key components of a simple generic application created
using LIME

Revisions and modifications that may be
required of a physics code
• Console I/O must be redirected (no pause statements or read/write to

standard streams)

• Each code must be wrapped so the multi-physics driver can link to it
(i.e., like a library)

• Each code must be organized into several key parts that can be called
independently

– Initialization: read inputs, allocate memory…

– Solve: compute solution for a given time step and state

– Advance: copy converged state and prepare for next step

Status of LIME

• Theory manual: Sandia report SAND2011-2195

• User manual: Sandia report SAND2011-8524

• LIME 1.0 (source and documentation) on sourceforge.net

Refactorization of stand-alone RELAP5-3D

INPUTD MAJORPROC

TRNCTL STRIPPLOT

TRAN TRNFIN

TRNSET

INITDATA GNINIT1

RELAP5 RELAP5_ModelEval.cpp

R5SETUP R5SOLVE R5FINALIZE

INITDATA GNINIT1 INPUTD TRNCTL

TRAN TRNSET

TRNFIN

Improvements to Model Evaluator

• Modifications needed to move from stand-alone to a coupled capability

• Further refactoring of RELAP5 to allow LIME to control time steps

– R5solve split into three new routines

– Corresponding function calls added to model evaluator

• LIME program manager needed to be modified to handle re-negotiation
of time step size after RELAP5-3D cuts (or increases) it

RELAP5_ModelEval.cpp

R5SETUP

R5POST_STEP

R5FINALIZE

R5TAKE_TIME_STEP R5PRE_STEP

LIME time step control

time_step = determine_time_step()

set_time_step()

solve_nonlinear(test_time_step)

has_time_step_changed(test_time_step,time_step)

current_time += time_step

update_time()

get_time_step()

 return caslmod_mp_requested_dt

set_time_step(double dt)

 caslmod_mp_lime_dt_ = dt

solve_standalone(double & dt)

 RELAP5_R5TAKE_TIME_STEP_F77 ()

 dt = caslmod_mp_lime_dt

update_time()

LIME Problem Manager RELAP5 Model Evaluator

RELAP5_ModelEval.cpp (1)
//----------------------- constructor ---

RELAP5_ModelEval::RELAP5_ModelEval(const LIME::Problem_Manager & pm,

 const string & name,

 Epetra_Comm& relap5_sub_comm,

 const std::string& input_file,

 const std::string& output_file,

 const std::string& restart_file) :

 problem_manager_api(pm),

 m_my_name(name),

 timer(0),

 m_input_file(input_file),

 m_output_file(output_file),

 m_restart_file(restart_file)

{

 RELAP5_R5SETUP_F77(&input_file[0],

 &output_file[0],

 &restart_file[0],

 input_file.length(),

 output_file.length(),

 restart_file.length());

 RELAP5_R5PRE_STEP_F77 ();

}

RELAP5_ModelEval.cpp (2)

//----------------------- destructor --

RELAP5_ModelEval::~RELAP5_ModelEval()

{

 RELAP5_R5FINALIZE_F77 ();

}

//------------------------ solve_standalone -----------------------------------

bool RELAP5_ModelEval::solve_standalone(double & dt)

{

 RELAP5_R5TAKE_TIME_STEP_F77 ();

 dt = caslmod_mp_lime_dt_;

 return (true);

}

//------------------------ get_time_step --------------------------------------

double RELAP5_ModelEval::get_time_step() const

{

 return caslmod_mp_requested_dt_;

}

Conversion of RELAP5-3D build system

• TriBITS (VERA build system) uses CMake

– Cross-platform, open-source build system

– Uses compiler-independent configuration files to generate native
makefiles

• RELAP5-3D build scripts replaced by CMake files

– Easier integration with TriBITS

– Necessary for inclusion in CASL automated software testing

– Allows out-of-tree builds

$HOME

BUILD DEBUG_BUILD INSTALL VERA

Addition of RELAP5-3D to CASL testing

• VERA software packages stored in CASL repository under Git revision
control

• Automated testing checks out appropriate source, performs builds, and
runs tests at various frequencies

– Check in test script: manual process to do basic testing and
determine if it is safe to commit/push changes

– Continuous integration: continuous loop that runs tests when
global repository changes are detected

– Nightly regression testing: a range of VERA configurations are built
and tested with different compilers (e.g., gnu and Intel)

• Emails sent to relevant developers when failures are detected

Role of RELAP5-3D in CASL

• VERA is being developed to address challenge problems

• Initial emphasis is on core physics/TH and crud deposition

Role of RELAP5-3D in CASL

• VERA Requirements Document describes technical abilities VERA
should provide

– capability to integrate systems analysis codes (e.g. RETRAN,
RELAP5, RELAP7) to support performance of nuclear safety
analyses and analysis of plant accidents and transients

• RIA

• LOCA

• Non-LOCA transients and accidents

– These capabilities to be added in stages as relevant challenge
problems are addressed

• RELAP5-3D is currently on hold

Future development issues

• RELAP5-3D can’t be distributed with VERA

– Export control

– License issues

• Will CASL version be synced with INL development version? If so,
how?

– It must be, if RELAP5-3D is supplied by licensees

– RELAP5-3D not maintained in an accessible repository

– CASL costs associated with merging new RELAP5-3D version

– INL costs associated with ongoing maintenance of CASL mods

• Software use agreement applies to version 3.0.0

• INL would have to maintain a VERA environment for QA testing

• What about training, support, etc.?

Summary

• Initial VERA integration completed early this year

• CASL continues to address current challenge problems

• Safety analysis challenge problems not yet defined

• Further development on hold for FY13

• Unanswered questions about ongoing/future maintenance issues

